Poster 5 - Pia Callmer, Clinical Physiology

MMK Department's Day 2024

Scientific summary

The accurate assessment of hemodynamics and its parameters play an important role when diagnosing cardiovascular diseases. In this context, 4D Flow Magnetic Resonance Imaging (4DFlow MRI) is a non-invasive measurement technique that facilitates hemodynamic parameter assessment as well as quantitative and qualitative analysis of three-directional flow over time. However, the assessment is limited by noise, low spatio-temporal resolution and long acquisition times. Consequently, in regions characterized by transient, rapid flow dynamics, such as the aorta and heart, capturing these rapid transient flows remains particularly challenging. Recent research has shown the feasibility of machine learning models to effectively denoise and increase the spatio-temporal resolution of 4D Flow MRI. However, temporal super-resolution networks, which can generalize on unseen domains and are independent on boundary segmentations, remain unexplored.

This study aims to investigate the feasibility of a neural network for temporal super-resolution and denoising of 4D Flow MRI data. To achieve this, we propose a residual convolutional neural network (based on the 4DFlowNet from Ferdian et al.) providing an end-to-end mapping from temporal low resolution space to high resolution space. The network is trained on patient-specific cardiac models created with computational-fluid dynamic (CFD) simulations covering a full cardiac cycle. For clinical contextualization, performance is assessed on clinical patient data. The study shows the potential of the 4DFlowNet for temporal-super resolution with an average relative error of 16.6% on an unseen cardiac domain, outperforming deterministic methods such as linear and cubic interpolation. We find that the network effectively reduces noise and recovers high-transient flow by a factor of 2 on both in-silico and in-vivo cardiac datasets. The prediction results in a temporal resolution of 20 ms, going beyond the general clinical routine of 30-40 ms. This study exemplifies the performance of a residual CNN for temporal super-resolution of 4D flow MRI data, providing an option to extend evaluations to aortic geometries and to further develop different upsampling factors and temporal resolutions.

Submitted by

Pia Callmer

Lilian Pagrot